Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids.
نویسندگان
چکیده
Obesity and insulin resistance are related to both enlarged intramyocellular triacylglycerol stores and accumulation of lipid intermediates. We investigated how lipid overflow can change the oxidation of intramyocellular lipids (ICL(OX)) and intramyocellular lipid storage (ICL). These experiments were extended by comparing these processes in primary cultured myotubes established from healthy lean and obese type 2 diabetic (T2D) individuals, two extremes in a range of metabolic phenotypes. ICLs were prelabeled for 2 days with 100 microM [(14)C]oleic acid (OA). ICL(OX) was studied using a (14)CO(2) trapping system and measured under various conditions of extracellular OA (5 or 100 microM) and glucose (0.1 or 5.0 mM) and the absence or presence of mitochondrial uncoupling [carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP)]. First, increased extracellular OA availability (5 vs. 100 microM) reduced ICL(OX) by 37%. No differences in total lipolysis were observed between low and high OA availability. Uncoupling with FCCP restored ICL(OX) to basal levels during high OA availability. Mitochondrial mass was positively related to ICL(OX), but only in myotubes from lean individuals. In all, a lower mitochondrial mass and lower ICL(OX) were related to a higher cell-associated OA accumulation. Second, myotubes established from obese T2D individuals showed reduced ICL(OX). ICL(OX) remained lower during uncoupling (P < 0.001), even with comparable mitochondrial mass, suggesting decreased mitochondrial function. Furthermore, the variation in ICL(OX) in vitro was significantly related to the in vivo fasting respiratory quotient of all subjects (P < 0.02). In conclusion, the rate of ICL(OX) is dependent on the availability of extracellular fatty acids and mitochondrial function rather than mitochondrial mass.
منابع مشابه
Uncoupling protein 3 expression and intramyocellular lipid accumulation by NMR following local burn trauma.
Burn trauma is a clinical condition accompanied by muscle wasting that severely impedes rehabilitation in burn survivors. Mitochondrial uncoupling protein 3 (UCP3) is uniformly expressed in myoskeletal mitochondria and its expression has been found to increase in other clinical syndromes that, like burn trauma, are associated with muscle wasting (e.g., starvation, fasting, cancer, sepsis). The ...
متن کاملSkeletal muscle lipid deposition and insulin resistance: effect of dietary fatty acids and exercise.
Mounting evidence indicates that elevated intramyocellular triacylglycerol concentrations are associated with diminished insulin sensitivity in skeletal muscle. This lipid accumulation is most likely due to enhanced fatty acid uptake into the muscle coupled with diminished mitochondrial lipid oxidation. The excess fatty acids are esterified and either stored or metabolized to various molecules ...
متن کاملFate of fatty acids at rest and during exercise: regulatory mechanisms.
Fatty acids are a major fuel source for humans both at rest and during exercise. Plasma free fatty acids (FFA), although present only in micromolar concentrations, are the major circulating lipid fuel. FFA availability can increase two- to four-fold with moderate intensity exercise. Other potential sources of fatty acids include circulating very low-density lipoprotein (VLDL) triglycerides (TGs...
متن کاملMitochondrial Substrate Availability and Its Role in Lipid-Induced Insulin Resistance and Proinflammatory Signaling in Skeletal Muscle
The relationship between glucose and lipid metabolism has been of significant interest in understanding the pathogenesis of obesity-induced insulin resistance. To gain insight into this metabolic paradigm, we explored the potential interplay between cellular glucose flux and lipid-induced metabolic dysfunction within skeletal muscle. Here, we show that palmitate (PA)-induced insulin resistance ...
متن کاملInvited Review Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity
Moro C, Bajpeyi S, Smith SR. Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity. Am J Physiol Endocrinol Metab 294: E203–E213, 2008. First published November 14, 2007; doi:10.1152/ajpendo.00624.2007.—Increased intramyocellular triglyceride (IMTG) content is found in both insulin-sensitive endurance-trained subjects and insulinresistant obese/type 2 diab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 299 1 شماره
صفحات -
تاریخ انتشار 2010